Neuer Materialeffekt koppelt Elektrizität und Magnetismus

Neuer Materialeffekt koppelt Elektrizität und Magnetismus

ID: 987747

uer Materialeffekt koppelt Elektrizität und Magnetismus


Ganze Industriezweige wie die moderne Mikroelektronik beruht auf der Wechselwirkung zwischen Materie und Elektromagnetismus. In maßgeschneiderten Materialien werden elektromagnetische Signale verarbeitet und gespeichert. Bisher hat man in der Materialwissenschaft allerdings die elektrische und die magnetische Welt weitgehend voneinander getrennt. Nun zeigt sich: Es gibt Materialien, sogenannte Multiferroika, in denen beides eng zusammenhängt. An der TU Wien wurde nun im Experiment nachgewiesen, dass sich magnetische Eigenschaften mit elektrischen Feldern beeinflussen lassen können. Für Technologien im Hochfrequenzbereich entstehen so ganz neue Möglichkeiten.

Das Beste aus beiden Welten

Dass Elektrizität und Magnetismus eng zusammengehören, ist schon seit langer Zeit klar: Wellen im freien Raum, wie sichtbares Licht oder Handysignale, haben immer sowohl eine elektrische als auch eine magnetische Komponente. Doch bei Materialeigenschaften hatten die beiden Bereiche bisher wenig miteinander zu tun: Es gibt Materialien mit magnetischer Ordnung, die auf äußere Magnetfelder reagieren, und andere Materialien mit elektrischer Ordnung, die von äußeren elektrische Feldern beeinflusst werden.

Ein gewöhnlicher Magnet hat zwar ein magnetisches Feld, aber kein elektrisches Feld. In einem piezoelektrischen Kristall hingegen kann man elektrische Felder erzeugen, aber keine magnetischen. Beides gleichzeitig schien lange unmöglich. "Die beiden Effekte entstehen normalerweise auf unterschiedliche Art", erklärt Prof. Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. "Magnetische Ordnung kommt von Elektronen, die ihre magnetischen Momente aneinander ausrichten, elektrische Ordnung kommt davon, dass positive und negative elektrische Ladungen an unterschiedlichen Orten sitzen und sich gegeneinander bewegen."

Elektromagnonen

2006 entdeckte Andrei Pimenov - damals noch an der Universität Augsburg - Hinweise darauf, dass es in bestimmten Materialien Anregungen gibt, die sowohl auf elektrischer als auch auf magnetischer Ordnung beruhen. "Elektromagnonen" nannte man diese Anregungen, die seither in der Materialwissenschaft heiß diskutiert werden. Nun gelang es Pimenov und seinem Team an der TU Wien, in einem Material aus Dysprosium, Mangan und Sauerstoff (DyMnO3) diese Anregungen gezielt mit einem äußeren elektrischen Feld umzuschalten.

Viele einzelne Elektronen in diesem Material richten bei niedrigen Temperaturen ihre magnetischen Momente aneinander aus: Jedes Elektron hat eine magnetische Richtung, die gegenüber der vom Nachbarn ein bisschen verdreht ist, so bilden sie gemeinsam eine Magnet-Spirale. Diese Spirale kann rechtsherum oder linksherum geführt werden - und genau das lässt sich überraschenderweise durch ein elektrisches Feld steuern und umschalten.

Schwingende Atome, wackelnde Momente

In einem magneto-elektrischen Material sind die Ladungen und magnetischen Momente der Atome miteinander verknüpft. In Dysprosium- Mangan-Oxyd ist dieser Effekt besonders stark: "Wenn die magnetischen Momente der Atome wackeln, dann bewegen auch deren elektrische Ladungen", erklärt Andrei Pimenov. Im nun verwendeten Material sind magnetische Momente und elektrische Ladungen gleichzeitig in der Schwingung beteiligt, und so lässt sich beides beeinflussen.

Nachgewiesen wird der Effekt, indem man Terahertz-Strahlung durch das Material schickt: Bei einheitlicher magnetischer Ordnung kann das Material die Schwingungsrichtung des Terahertz-Strahls drehen. Wenn man mit einem statisches elektrisches Feld die Richtung der magnetischen Spirale ein und ausschalten kann, legt man damit also auch fest, ob das Feld der Terahertz-Strahls gedreht wird oder nicht.

Zahlreiche Anwendungsmöglichkeiten zeichnen sich ab: Überall dort, wo man die Vorteile magnetischer und elektrischer Effekte kombinieren möchte, gelten solche Materialien mit Elektromagnonen-Effekt als Zukunftshoffnung. Einsätze für neuartige Verstärker, Transistoren oder Datenspeicher sind vorstellbar. Auch für Sensoren könnten solche Elektromagnonen verwendet werden.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/neuermaterialeffekt/

Originalpaper: http://prl.aps.org/abstract/PRL/v111/i22/e227201


Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at



(pressrelations) - ekt koppelt Elektrizität und Magnetismus


Ganze Industriezweige wie die moderne Mikroelektronik beruht auf der Wechselwirkung zwischen Materie und Elektromagnetismus. In maßgeschneiderten Materialien werden elektromagnetische Signale verarbeitet und gespeichert. Bisher hat man in der Materialwissenschaft allerdings die elektrische und die magnetische Welt weitgehend voneinander getrennt. Nun zeigt sich: Es gibt Materialien, sogenannte Multiferroika, in denen beides eng zusammenhängt. An der TU Wien wurde nun im Experiment nachgewiesen, dass sich magnetische Eigenschaften mit elektrischen Feldern beeinflussen lassen können. Für Technologien im Hochfrequenzbereich entstehen so ganz neue Möglichkeiten.

Das Beste aus beiden Welten

Dass Elektrizität und Magnetismus eng zusammengehören, ist schon seit langer Zeit klar: Wellen im freien Raum, wie sichtbares Licht oder Handysignale, haben immer sowohl eine elektrische als auch eine magnetische Komponente. Doch bei Materialeigenschaften hatten die beiden Bereiche bisher wenig miteinander zu tun: Es gibt Materialien mit magnetischer Ordnung, die auf äußere Magnetfelder reagieren, und andere Materialien mit elektrischer Ordnung, die von äußeren elektrische Feldern beeinflusst werden.

Ein gewöhnlicher Magnet hat zwar ein magnetisches Feld, aber kein elektrisches Feld. In einem piezoelektrischen Kristall hingegen kann man elektrische Felder erzeugen, aber keine magnetischen. Beides gleichzeitig schien lange unmöglich. "Die beiden Effekte entstehen normalerweise auf unterschiedliche Art", erklärt Prof. Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. "Magnetische Ordnung kommt von Elektronen, die ihre magnetischen Momente aneinander ausrichten, elektrische Ordnung kommt davon, dass positive und negative elektrische Ladungen an unterschiedlichen Orten sitzen und sich gegeneinander bewegen."

Elektromagnonen

2006 entdeckte Andrei Pimenov - damals noch an der Universität Augsburg - Hinweise darauf, dass es in bestimmten Materialien Anregungen gibt, die sowohl auf elektrischer als auch auf magnetischer Ordnung beruhen. "Elektromagnonen" nannte man diese Anregungen, die seither in der Materialwissenschaft heiß diskutiert werden. Nun gelang es Pimenov und seinem Team an der TU Wien, in einem Material aus Dysprosium, Mangan und Sauerstoff (DyMnO3) diese Anregungen gezielt mit einem äußeren elektrischen Feld umzuschalten.



Viele einzelne Elektronen in diesem Material richten bei niedrigen Temperaturen ihre magnetischen Momente aneinander aus: Jedes Elektron hat eine magnetische Richtung, die gegenüber der vom Nachbarn ein bisschen verdreht ist, so bilden sie gemeinsam eine Magnet-Spirale. Diese Spirale kann rechtsherum oder linksherum geführt werden - und genau das lässt sich überraschenderweise durch ein elektrisches Feld steuern und umschalten.

Schwingende Atome, wackelnde Momente

In einem magneto-elektrischen Material sind die Ladungen und magnetischen Momente der Atome miteinander verknüpft. In Dysprosium- Mangan-Oxyd ist dieser Effekt besonders stark: "Wenn die magnetischen Momente der Atome wackeln, dann bewegen auch deren elektrische Ladungen", erklärt Andrei Pimenov. Im nun verwendeten Material sind magnetische Momente und elektrische Ladungen gleichzeitig in der Schwingung beteiligt, und so lässt sich beides beeinflussen.

Nachgewiesen wird der Effekt, indem man Terahertz-Strahlung durch das Material schickt: Bei einheitlicher magnetischer Ordnung kann das Material die Schwingungsrichtung des Terahertz-Strahls drehen. Wenn man mit einem statisches elektrisches Feld die Richtung der magnetischen Spirale ein und ausschalten kann, legt man damit also auch fest, ob das Feld der Terahertz-Strahls gedreht wird oder nicht.

Zahlreiche Anwendungsmöglichkeiten zeichnen sich ab: Überall dort, wo man die Vorteile magnetischer und elektrischer Effekte kombinieren möchte, gelten solche Materialien mit Elektromagnonen-Effekt als Zukunftshoffnung. Einsätze für neuartige Verstärker, Transistoren oder Datenspeicher sind vorstellbar. Auch für Sensoren könnten solche Elektromagnonen verwendet werden.

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/neuermaterialeffekt/

Originalpaper: http://prl.aps.org/abstract/PRL/v111/i22/e227201


Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Unternehmensinformation / Kurzprofil:
PresseKontakt / Agentur:

Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov(at)tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner(at)tuwien.ac.at



drucken  als PDF  an Freund senden  Der Energieversorger KlickEnergie.de baut sein Versorgungsgebiet weiter aus Bittere Rückschau ? neuer Wenderoman über ein zerrissenes Leben voller Gewalt
Bereitgestellt von Benutzer: pressrelations
Datum: 26.11.2013 - 10:21 Uhr
Sprache: Deutsch
News-ID 987747
Anzahl Zeichen: 10623

pressrelations.de – ihr Partner für die Veröffentlichung von Pressemitteilungen und Presseterminen, Medienbeobachtung und Medienresonanzanalysen


Diese Pressemitteilung wurde bisher 299 mal aufgerufen.


Die Pressemitteilung mit dem Titel:
"Neuer Materialeffekt koppelt Elektrizität und Magnetismus"
steht unter der journalistisch-redaktionellen Verantwortung von

Technische Universität Wien (Nachricht senden)

Beachten Sie bitte die weiteren Informationen zum Haftungsauschluß (gemäß TMG - TeleMedianGesetz) und dem Datenschutz (gemäß der DSGVO).

Die Suche nach der Neutronenwelle ...

r Neutronenwelle Es war sicher eines der bedeutendsten Experimente, die je in Österreich durchgeführt wurden: Vor 40 Jahren, am 11. Jänner 1971, konnte Prof. Helmut Rauch und sein Team am Wiener Atominstitut erstmals nachweisen, dass Neutronen ...

Kochrezept für ein Universum ...

n Universum Wenn man Suppe erhitzt, beginnt sie zu kochen. Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen - ganz ohne Urknall. Diesen Phasenübergang zwischen einem langweiligen leeren Raum und einem expandierenden Uni ...

Klimawandel beeinflusst Wasserkreislauf ...

flusst Wasserkreislauf Man kennt den Effekt aus dem eigenen Garten: In der Nacht ist der Rasen nass, doch kaum kommt die Sonne heraus kann die erwärmte Luft mehr Feuchtigkeit aufnehmen und der Tau verdunstet. Dementsprechend würde man auch erwar ...

Alle Meldungen von Technische Universität Wien


 

Werbung



Facebook

Sponsoren

foodir.org The food directory für Deutschland
Informationen für Feinsnacker finden Sie hier.

Firmenverzeichniss

Firmen die firmenpresse für ihre Pressearbeit erfolgreich nutzen
1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z